Hidden Integrality of SDP Relaxation for Sub-Gaussian Mixture Models
نویسندگان
چکیده
We consider the problem of estimating the discrete clustering structures under Sub-Gaussian Mixture Models. Our main results establish a hidden integrality property of a semidefinite programming (SDP) relaxation for this problem: while the optimal solutions to the SDP are not integer-valued in general, their estimation errors can be upper bounded in terms of the error of an idealized integer program. The error of the integer program, and hence that of the SDP, are further shown to decay exponentially in the signal-to-noise ratio. To the best of our knowledge, this is the first exponentially decaying error bound for convex relaxations of mixture models, and our results reveal the “global-to-local” mechanism that drives the performance of the SDP relaxation. A corollary of our results shows that in certain regimes the SDP solutions are in fact integral and exact, improving on existing exact recovery results for convex relaxations. More generally, our results establish sufficient conditions for the SDP to correctly recover the cluster memberships of (1−δ) fraction of the points for any δ ∈ (0, 1). As a special case, we show that under the d-dimensional Stochastic Ball Model, SDP achieves non-trivial (sometimes exact) recovery when the center separation is as small as √ 1/d, which complements previous exact recovery results that require constant separation.
منابع مشابه
SDP Integrality Gaps with Local `1-Embeddability
We construct integrality gap instances for SDP relaxation of the MAXIMUM CUT and the SPARSEST CUT problems. If the triangle inequality constraints are added to the SDP, then the SDP vectors naturally define an n-point negative type metric where n is the number of vertices in the problem instance. Our gap-instances satisfy a stronger constraint that every sub-metric on t = O((log log log n) 1 6 ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملIntegrality Gaps for Strong SDP Relaxations of U G
With the work of Khot and Vishnoi [18] as a starting point, we obtain integrality gaps for certain strong SDP relaxations of U G. Specifically, we exhibit a U G gap instance for the basic semidefinite program strengthened by all valid linear inequalities on the inner products of up to exp(Ω(log log n)1/4) vectors. For a stronger relaxation obtained from the basic semidefinite ...
متن کاملIntegrality gaps of semidefinite programs for Vertex Cover and relations to $\ell_1$ embeddability of Negative Type metrics
We study various SDP formulations for Vertex Cover by adding different constraints to the standard formulation. We show that Vertex Cover cannot be approximated better than 2 − o(1) even when we add the so called pentagonal inequality constraints to the standard SDP formulation, en route answering an open question of Karakostas [14]. We further show the surprising fact that by strengthening the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018